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Abstract—Stage–discharge relationships for coastal rivers having 
tidal flow are not unique. They are nonlinear and show multiple 
loops. Conventional regression methods which are based on simple 
one to one stage-discharge relationships oversimplify the underlying 
complex physical processes and result in significant errors in the 
estimated discharges. In this study artificial neural network models 
are used to model such complex relationships. Stage and discharge 
data from a river reach having tidal effect were used for training, 
validation and simulation of the Artificial Neural Network models. 

1. INTRODUCTION 

Determination of flow rate accurately in rivers is very 
important for a number of hydrologic applications such as 
water resources planning and management, water, design of 
different hydraulic structures. However, collecting data for 
measurement of streamflow discharge continuously is costly 
and challenging, especially during high flood conditions. In 
practice, water stages are easier and less expensive to measure. 
They are recorded and converted into discharges by using a 
pre-established stage–discharge relationship. These 
relationships are usually referred to as rating curves. However, 
the stage–discharge relationship is not always simple and 
unique because discharge is not a function of stage only. It 
depends on other parameters like water surface slope, channel 
geometry, channel bed roughness, and unsteadiness of flow. In 
some cases, a combination of these factors may result in non-
unique relationship that is usually reflected as multiple loops 
in the observed measurements of stage and corresponding 
discharge. 

There are two different approaches for modeling stage-
discharge relationships. In the first approach the unsteady, 
non-uniform flow equations are solved numerically provided 
accurate information on channel geometry and boundary 
conditions are available. The other approach is data driven 
modeling which is basically a method of nonlinear regression. 
Artificial Neural Network(ANN) is an example of such 
approach. 

2. STUDY AREA AND DATA 

In this study the stage and discharge data of the river 
Sacramento has been used [3]. The Sacramento River is 
tributary to San Francisco Bay, an arm of the Pacific Ocean, 
and during periods of low flow, tidal effects extend upstream 
beyond the city of Sacramento for at least 40km. The 
discharge measurements were made by USGS at intervals of 
about 1.25 hours during the course of 12 daily tidal cycles in 
the years 1957-60. The streamflow measuring section is at the 
site of the stage recorder in the city of Sacramento; the 
auxiliary stage recorder is 17.4km downstream near the town 
of Freeport. Local inflow into the 17.4km reach of channel is 
negligible. The reach itself is located far enough upstream on 
the estuary so that no reversal of flow occurs there. However, 
when upland discharge (streamflow) into the estuary was less 
than about 849.5cumec, the discharge was affected by tidal 
action, and unsteady flow exists in the reach. The relative 
magnitude of the tidal effect in the reach increases with 
decrease in the upland flow and with increase in the range in 
elevation between high and low tides at the mouth of San 
Francisco Bay. Twelve series of discharge measurements, 
made during the years 1957-60, were available. Each series of 
measurements extended over a period of about 33 hours in 
order to include one complete lunar day (approximately 24.8 
hours), and in the course of each series, about 25 discharge 
measurements were made. As the data was not recorded at 
uniform time intervals, the data was regularized using the 
MATLAB time series tools. 

3. DESIGN OF ANN MODELS 

3.1. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are a biologically inspired 
computational model based on the functioning of human brain. 
Neural network models are developed by training the network 
to represent the relationships and processes that are inherent 
within the data. Being essentially non-linear regression 
models, they perform an input–output mapping using a set of 
interconnected simple processing nodes or neurons. Each 
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neuron takes in inputs either externally or from other neurons 
and passes it through an activation or transfer function such as 
a logistic or sigmoid curve. Data enter the network through the 
input units arranged in what is called an input layer. These 
data are then fed forward through successive layers including 
the hidden layer in the middle to emerge from the output layer 
on the right. The inputs can be any combination of variables 
that are thought to be important for predicting the output; 
therefore, some knowledge of the hydrological system is 
important. The hidden layer is the essential component that 
allows the neural network to learn the relationships in the data. 
Multilayer perceptron (MLP) is one of the most commonly 
used neural network. The backpropagation algorithm is a 
variation of a gradient descent optimisation algorithm that 
minimises the error between the predicted and actual output 
values. The weighted connections between neurons are 
adjusted after each training cycle until the error in the 
validation data set begins to rise. The validation data set is a 
second data set that is given to the network to evaluate during 
training. Once the networks are trained to satisfaction, it can 
be put to operation when the new input data are passed 
through the trained network in its non-training mode to 
produce the desired model outputs. In order to validate the 
performance of the trained network before it is put into real 
operation, however, the operation mode is usually imitated by 
using the test data set.  

3.2. Data Division for Model Generalization 

The main objective of modeling the stage-discharge 
relationship (for any modeling) is the ability of the model to 
predict beyond the data set used for training, which is referred 
to as the ability of the model to generalize. There are several 
approaches by which the available data can be split into 
separate sets for training and testing. The hold out method is 
best for proper utilisation of the available data [2] . In this 
method, small subsets of the data are selected and withheld in 
turn. Each withheld subset is kept for independent testing. The 
remaining data are used for training of the model. The main 
advantage of this method is maximizing the utilization of 
available data, avoiding undesirable reduction of sample size. 

Statistical properties of these 12 events are summarized as 
follows. The observed peaks of these runoff events included 
one peak larger than 500m3/s, four peaks between 350 m3/s 
and 450 m3/s, and seven peaks between 200 m3/s and 350 
m3/s. Each of the 12 significant runoff events is withheld one 
at a time to independently test the model accuracy. The 
remaining data are used for model training and to compute and 
update the network weights. However, during training, and 
depending on the network complexity, running ANN for too 
many epochs iterations may cause the network to memorize 
the training sample without learning to generalize to new data 
patterns and relationships. Therefore, the remaining data are 
divided into a training set and a validation set. This approach 
is known as cross validation and is used to avoid the problem 
of overfitting in ANN models. During the training process, the 

errors of both the training and the validation sets are computed 
and monitored. In the initial phases of training, errors of both 
the training and validations sets will continue to decrease with 
the increase of training iterations. When the network starts to 
over-fit the training subset of data, the validation error will 
start to increase. At this stage, the training process is stopped 
and the current set of network weights and thresholds is 
retained and assumed to be the optimal parameters of the 
model. This process is repeated for each of the 12 events and 
the performance of the developed ANN is assessed 
statistically. 

3.3. ANN Structure and Selection of Input Variables 

Before setting up an ANN, it is necessary to determine the 
number of hidden layers in the network and number of nodes 
in each hidden layer. By trial and error, it was found that two 
hidden layers were adequate for modeling the stage discharge 
relationship in this case. The number of nodes in the hidden 
layers were also selected in a similar manner. The number of 
nodes used in the hidden layers was kept between five and 
seven, depending on the number of input variables. In the 
present study, the input variables are selected using a 
combination of physical reasoning and a heuristic approach, 
which is discussed in [1]. In this approach, the number of 
input variables is increased gradually to assess their effect on 
the model performance. The minimum number of inputs were 
chosen as three, as the models with one or two inputs were not 
sufficient to model the complex stage-discharge relationship in 
a tidal river. 

3.4. Performance Evaluation 

Various statistical parameters are used as a measure of 
performance evaluation [1]. Statistical measures used in this 
study to assess the model performance, are the root mean 
square error RMSE, the coefficient of efficiency E, and the 
adjusted coefficient of efficiency E1, defined as follows: 
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Where, Q୧ and Q୮୧ are observed and predicted discharges of 
the i	th number of sample, respectively;  
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and n is the size of the stage–discharge sample. Qనതതതത denote the 
mean of Q୧ . The RMSE describes the average difference 
between model results and observations in units of the 
discharge variable and Eq.1 can be normalized to provide a 
relative measure with respect to the mean observed discharge 
as in Eq.2. Physically, the coefficient of efficiency, E, 
measures the differences between the observations and 
predictions relative to the variability in the observed data 
itself. According to Eq.3, E may range from -∞ to 1.0, where 
E=1.0 indicates a perfect model, E=0.0 indicates that the 
observed mean is as good a predictor as the model, and E < 0 

indicates that the model is worse than using the observed 
mean as a predictor, or in other words the residual variance 
(described by the numerator in the expression above), is larger 
than the data variance (described by the denominator). The 
combined use of r, RMSE, and E, helps to assess each model’s 
performance and compare the accuracy of any two modeling 
approaches. Coefficient of correlation r has been defined in 
Eq. 4. With increase in the number of inputs the performance 
of the models improved. Statistical measures of some of the 
tested cases are presented in Table 1. 

 

Table 1: Statistical Analysis of ANN Prediction Accuracy. 

Event Parameters Notation r RMSE(m3/s) RMSE(%) 
 

E 
 

C ht,ht-1,Qt-1 III 0.9363 7.76 2.00 
0.868 

 

C 
ht-1,ht-2,Qt-1 

 
IV 0.9327 10.14 2.61 0.758 

C 
ht,Qt-1,Qt-2 

 
V 0.947 6.75 1.74 0.894 

C 
ht-1,ht-2,Qt-2 

 
VI 0.867 10.51 2.71 0.747 

C ht-1, ht-2,ht-3, ht-4 IX 0.838 12.31 3.18 
0.651 

 

J ht,ht-1,Qt-1 III 0.979 8.14 3.68 
0.942 

 

J 
ht-1,ht-2,Qt-1 

 
IV 0.846 21.11 9.5 0.619 

J 
ht,Qt-1,Qt-2 

 
V 0.957 10.26 4.62 0.91 

J 
ht-1,ht-2,Qt-2 

 
VI 0.844 20.37 9.17 0.644 

J 
ht,ht-1,ht-2, ht-3 

 
VIII 0.844 19.87 8.98 0.387 

J ht-1, ht-2,ht-3, ht-4 IX 0.795 24.01 10.88 
0.545 
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Fig. 1: Predicted and Observed tidal data for set C (i) Case III (ii)Case IV(iii) Case V (iv)Case VI 

  

 

Fig. 2: Predicted and Observed tidal data for set J (i) Case III (ii) Case IX(iii) Case V(iv) Case VI 

4. RESULTS AND DISCUSSION 

Out of the 12 events (subsets of data) simulated, two events, 
Event C having a high range of discharge and Event J with 
comparatively low ranges of discharge are presented. Results 
of the following ANN models are presented. Model III, IV, V, 
VI, VIII and IX are presented. Fig.1 shows the plots of the 
observed and predicted series for event C and Fig. 2 shows the 
plots of the observed and predicted series for event J. Model 
III and V each having three numbers of input variables give 
the best result for both events C and J (in terms of the 
statistical parameters and plots). For high discharges Model VI 
gives good results. This shows that just increasing the number 

of input variables may not always improve the results. The 
variables used and the situations to be modeled are also to be 
considered. 

5. CONCLUSION 

The ANN Models has been developed for estimation of 
discharges, and can be used as an alternative of flow rating 
curves. A three-layered network is used. The number of nodes 
used in the hidden layers was kept between five and seven, 
depending on the number of input variables. In the present 
study, the input variables are selected using a combination of 
physical reasoning and a heuristic approach.  
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